a2 United States Patent
Wang et al.

US009053322B2

US 9,053,322 B2
Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

(54) COMPUTING ENVIRONMENT SECURITY
METHOD AND ELECTRONIC COMPUTING
SYSTEM

(71) Applicant: INDUSTRIAL TECHNOLOGY

RESEARCH INSTITUTE, Hsinchu
(TW)

(72) Inventors: Pang-Chieh Wang, Kaohsiung (TW);

Jun-Bin Shi, Yunlin County (TW);

Shu-Fen Yang, Hsinchu County (TW);

Jun-Yu Chen, Kaohsiung (TW)

(73) INDUSTRIAL TECHNOLOGY

RESEARCH INSTITUTE, Hsinchu

(TW)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 271 days.

@
(22)

Appl. No.: 13/741,426

Filed: Jan. 15, 2013

(65) Prior Publication Data

US 2014/0020094 A1 Jan. 16, 2014

(30) Foreign Application Priority Data

Jul. 12,2012 (TW) 101125177 A

(51) Int.CL
GOG6N 5/00
GOGF 11/00

(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC ... GO6F 21/57 (2013.01); GO6F 21/566
(2013.01); HO4L 63/123 (2013.01); HO4L
63/168 (2013.01); GOGF 2221/033 (2013.01);
GO6F 2221/2101 (2013.01)
Field of Classification Search
CPC e GOGF 21/57
See application file for complete search history.

(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

6,282,698 Bl
6,792,543 B2

8/2001 Baker et al.
9/2004 Pak et al.

(Continued)

FOREIGN PATENT DOCUMENTS

™
™
™

1256212
200824401 A 6/2008
201220118 A 5/2012

OTHER PUBLICATIONS

6/2006

English Abstract translation of TW1256212 (Published Jun. 1, 2006).
Zhou, et al.: “Detecting Repackaged Smartphone Applications in
Third-Party Android Marketplaces”; CODASPY”12, Feb. 7-9, 2012,
San Antonio, Texas, USA. Copyright 2012 ACM 978-1-4503-1091-
8/12/02.

(Continued)

Primary Examiner — Alan Chen
(74) Attorney, Agent, or Firm — McClure, Qualey &
Rodack, LLP

(57) ABSTRACT

A computing environment security method is provided. The
method includes: a) dissolving an application package to be
tested to obtain at least one data set, wherein each data set
corresponds to contents with respect to one of a plurality of
aspects of the application package; and b) evaluating whether
the application package is a repackaged application accord-
ing to the at least one data set. Step (b) includes: ¢) for each
data set, analyzing a characteristic relationship ofthe contents
with respect to the aspect corresponding to the data set to
accordingly generate characteristic data for the data set; and
d) determining whether the application package to be tested is
a repackaged application package according to the character-
istic data of the at least one data set and a search result
obtained from a database, wherein the search result corre-
sponds to the characteristic data within a corresponding dis-
tance.

26 Claims, 8 Drawing Sheets

Dissolve an application package to
be tested to obtain at least one data
set, each dala set being contents
with respect to one of a piurality of
aspects of the application package
I

-S10

820

{

U

For each of at least one data sef,
analyze a characteristic relationship
of contents with respect to the aspect
of the corresponding data set, and
generate characteristic data for the
data set according to the
characteristic relationship

L S21

823
{

v

Evaluate a similarity of the
application package to be tested
according to characteristic data of at
least one data set and a search result
that is obtained from a database and
corresponds to the characteristic
data within & corresponding distance

{533

3

Determine whether the apglication
package to be tested is a repackaged
application package according to the
similarity of application package to be

tested

835

US 9,053,322 B2
Page 2

(51) Imt.ClL
GO6F 21/57 (2013.01)
GO6F 21/56 (2013.01)
HO4L 29/06 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,284,274 B1 10/2007 Walls et al.

8,505,099 B2 8/2013 Chiang et al.

8,615,801 B2 12/2013 Crossetal.

8,756,432 B1* 6/2014 Chenetal. 713/188
8,844,036 B2* 9/2014 Saidietal. 726/23

2003/0033536 Al 2/2003 Paketal.

2005/0246534 Al* 11/2005 Kirkupetal. 713/170
2007/0239993 Al* 10/2007 Sokolskyetal. 713/188
2007/0240217 Al 10/2007 Tuvell et al.

2007/0240218 Al 10/2007 Tuvell et al.

2007/0240219 Al 10/2007 Tuvell et al.

2007/0240220 Al 10/2007 Tuvell et al.

2007/0240221 Al 10/2007 Tuvell et al.

2007/0240222 Al 10/2007 Tuvell et al.

2008/0184369 Al 7/2008 Ahn et al.

2010/0229239 Al 9/2010 Rozenberg et al.

2011/0047594 Al 2/2011 Mahaffey et al.

2011/0047620 Al 2/2011 Mahaffey et al.

2011/0179484 Al 7/2011 Tuvell et al.

2011/0271343 Al 11/2011 Kim et al.

2013/0254880 Al* 9/2013 Alperovitchetal. 726/22

OTHER PUBLICATIONS

Lee, etal.: “A Study on Analysis of Malicious Codes Similarity Using
N-Gram and Vector Space Model”; Department of Industrial Secu-
rity, Kyonggi University, 94-6 Yiui-dong, Yeongtong-gu, Suwon-si,
Gyeonggi-do, Republic of Korea; 978-1-4244-9224-4/11/©2011
IEEE.

Fu, et al.: “Static Detection of API-calling Behavior from Malicious
Binary Executables”; 978-0-7695-3504-3/08, © 2008 IEEE DOI
10.1109/ICCEE.2008.53; pp. 388-392.

Shang, et al.: “Detecting Malware Variants via Function-call Graph
Similarity”; Institute of Computer Science, Hangzhou Dianzi Uni-
versity, PR. China; 978-1-4244-9356-2/10/c 2010 IEEE; pp. 113-
120.

Zhang, etal.: “MetaAware: Identifying Metamorphic Malware”; sup-
ported by the National Science Foundation (NSF) under grant CNS-
0627505; Dec. 2007.

Sulaiman, et al.: “Disassembled Code Analyzer for Malware
(DCAM)”; 0-7803-9093-8/05/ ©2005 IEEE; pp. 398-403.

Park, et al.: “A Similarity based Technique for Detecting Malicious
Executable files for Computer Forensics”; 0-7803-9788-6/06/ ©
2006 IEEE; pp. 188-193.

Walenstein, et al.: “The Software Similarity Problem in Malware
Analysis”; Dagstuhl Seminar Proceedings 06301 Duplication,
Redundancy, and Similarity in Software http://drops.dagstuhl.de/
opus/volltexte/2007/964.

TW Office Action dated Jun. 25, 2014.

* cited by examiner

U.S. Patent Jun. 9, 2015 Sheet 1 of 8 US 9,053,322 B2

: Electronic |—9g
APP1 device
E fmm o
| | Sieving |
/ | mechanism |
/ 10 N | A |
.y T
Server system w21
S S
, Sieving |
E mecharnism |

FIG. 1

Application
S ——
I Firstaspect
L. Sontents

Second aspect E
contents E

U.S. Patent Jun. 9, 2015 Sheet 2 of 8 US 9,053,322 B2

Dissolve an application package to
be tested to obtain at least one data

sef, each data set being contents _S10
with respect to one of a plurality of
aspects of the application package 820

For each of at least one data set,
analyze a characteristic relationship | —g21
of contents with respect {o the aspect
of the corresponding data set, and
generate characteristic data for the
data set according to the
characteristic relationship

023
4
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm I
Evaluate a similarity of the
application package to be tested
L~ S33

i

i i
{ i
i i
{ i
! i
! according to characteristic data of at ;
! least one data set and a search result i
! that is obtained from a dalabase and 5
; corresponds o the characleristic !
! data within a corresponding distance :
! i
§ i
i i
i i
i i
i i
i i
i i
{ i
i i
{ i
| |
i i

v

Determine whether the application |-—835
package 1o be tested is a repackaged
application package according fo the
simitarity of application package to be

tested

U.S. Patent Jun. 9, 2015 Sheet 3 of 8 US 9,053,322 B2

S137

-

i

Receive an application package {o S0
be tested inresponse to a
software release request

v

Perform a sieving process L~ S 430

v

S130

Release the application
package to be tested

Malicious
program?

3237

-

/,_8135

Dedline release of the application
package to be lested

FIG. 4

Receive an application package to - 8210
be tested

Perform a sieving process in
response {o a software installation 5220
request

35230

install the application
nackage to be lested

Malicious
program?

5235

Dedline installation of the
application package to be lested

FIG. 5

US 9,053,322 B2

Sheet 4 of 8

Jun. 9, 2015

U.S. Patent

Unsad
UORBLULIBG

-

Ol
//

SNPoW

UONRUILLBIBC

wedse ebesn
S2UN0SBI I0)
BNPOLL UOHEBNIBAS
N

geL .

oadse uoneiado
weibold Joy
SNPOW UDHBNIBAD
Apepung

snpow
sisAipue podse
sbBesn 82inosey

GZL

el —~

oadse
garlUait] 18shn 1o}
SNPOW USHENIBAS
Arepung

SNPoW
sisAjpue pedse
uonesedo
wesboud

¢z —"

BINPOL
sisAjgur oadse
oBLISIUL JBSN

4,4

SINDOW SSEURIEC]

SNpous

Buisssooidaid

abeyoed
uonesiddy

U.S. Patent Jun. 9, 2015 Sheet 5 of 8 US 9,053,322 B2

210 200

230
Control unit Storage | /
unit

240
//

Display unit
Communication | 240
unit -/
Event 3< M1 %g
Hello! ...
B1 B2
{ i
| |
v v

Event 1 Event 2

FIG. 8

U.S. Patent Jun. 9, 2015 Sheet 6 of 8 US 9,053,322 B2
User interface aspect
characteristic data
5315 /
(3310
Application packages Are user interface
ATl and Ax are layouts similar?
dissimilar
5325
£ -$320

Application packages
Al and Ax are
dissimilar

e

ﬁ< Are APls of user
interfaces similar? .~

5435

-

Application packages
Al and Ax are
dissimilar

S330
/"

Determine similarity metadata
Sim1 for (Ax, A1)

FIG. 9

/

/

Yes

Program operation aspect
characteristic dala

5410

Compare processing paths

No

<7 Are the processing paths

similar?

J/ Yes

Determine similarity metadata
Sime for (Ax, A1)

FIG. 10

U.S. Patent Jun. 9, 2015 Sheet 7 of 8 US 9,053,322 B2

Rasource usage aspect
characteristic data

S515

-

Application packages
Al and Ax are
dissimilar

No A
Are they similar in

resource?

Obtain metadata for an
application package Ax from a
database

3530

//"
Determine similarity metadata
Sim3 for (Ax, A1)

/""3549

Determine similarity metadata
Sim4 for other media files

FIG. 11

US 9,053,322 B2

Sheet 8 of 8

Jun. 9, 2015

U.S. Patent

OLs
\\.

Aa.i..-a-i.s
BINPOW UOREDIUNLILIOD
SNpowW sisAigurR
wedse uoneiedo ks sinpow SNPoW
weibosd asegeIeQ UCHBUILLISIEC]

BINPOL UonENEAS ARG

T T

SINPoW 2NPpOL
sisAipue padse sishjeue padse
afesn 80IN0ssy SOBUSIU 188N

i

BNPOoLW
Buissanoudald

BINPOLL

LONRDIUNULIOD

Binpow
UONBUILLIBIB

or—

NPoW uonen|eAa Aleiug

B|Npou
sisAjgue 10edse
sbesn e2unosey

3Npou
sisAleue pedse
BOBLISIUL 1SS

Buissanoidaid

SNPOW

Qmwt\\

US 9,053,322 B2

1
COMPUTING ENVIRONMENT SECURITY
METHOD AND ELECTRONIC COMPUTING
SYSTEM

This application claims the benefit of Taiwan application
Serial No. 101125177, filed Jul. 12, 2012, the disclosure of
which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

The disclosure relates to a computing environment security
method and an electronic computing system.

BACKGROUND

Dueto a centralized software marketplace such as “Google
Play” operating on an Android platform included in a smart
phone, in addition to implementing a conventional mecha-
nism applied to a personal computer, applications on the
smart phone also adopt a code signing mechanism for soft-
ware security protections of the smart phone. That is, an
application to be executed on a smart phone can only be
executed given that the application is signed. Thus, it is not
only ensured that the application is unmodified but also
proven that a developer of the application is verified by the
software marketplace. Further, applications on a smart phone
cannot be freely acquired and distributed as those in a per-
sonal computer. More specifically, as installation processes
and post-installation stages of applications on a smart phone
are protected, the applications cannot be arbitrarily dupli-
cated and propagated.

Although the protection mechanism for a smart phone is
much stricter than that of a personal computer, a software
cracker is still able to illegally acquire a protected application
after eluding system loopholes and obtaining a root of the
smart phone or jailbreaking. The cracker may then add mali-
cious code to the acquired application, make appropriate
modifications to generate a new code signature and repackage
the modified application. Such cracking approach that modi-
fies an application or adds malicious code via a software
signature, repacks the modified application, and distributes
the repacked application is referred to as “repackage”. The
repackaged application is then released to a software market-
place or placed at a piracy software website or forum, and
then downloaded and installed by uninformed users, so as to
propagate malware.

The repackaging frequently occurs on the Android plat-
form since a cracker can sign a cracked application again after
modifying or implanting the cracked application with mali-
cious code. Related reports have indicated that, malware on
the Google Android platform in the second half of 2011 grows
atan average increasing rate of 60% monthly, with most of the
malware being repackaged and distributed through market-
places and Internet forums. Therefore, the protection against
malware for the Android platform is a critical issue of com-
puting environment security.

SUMMARY

The disclosure is directed to a computing environment
security method and an electronic computing system.

According to an embodiment, a computing environment
security method is provided. The method includes: a) dissolv-
ing an application package to be tested by an electronic com-
puting system to obtain at least one data set, wherein each of
the at least one data set corresponds to contents with respect
to one of a plurality of aspects of the application package to be

10

15

20

25

30

35

40

45

50

55

60

2

tested; and b) evaluating whether the application package to
be tested is a repackaged application according to the at least
one data set. Step (b) includes: ¢) for each of the at least one
data set, analyzing a characteristic relationship ofthe contents
with respect to the aspect corresponding to the data set and
generating characteristic data for the data set; and d) deter-
mining whether the application package to be tested is a
repackaged application package according to the character-
istic data of the at least one data set and a search result
obtained from a database to generate a determination result;
wherein the search result corresponds to the characteristic
data within a corresponding distance, and the database
includes characteristic data associated with the aspects cor-
responding to a plurality of application packages. The elec-
tronic computing system processes the application to be
tested according to the determination result.

According to an alternative embodiment, an electronic
computing system including a communication unit and a
control unit is provided. The control unit receives an applica-
tion package to be tested via the communication unit. The
control unit at least: dissolves the application package to be
tested to obtain at least one data set, wherein each of the at
least one data set corresponds to contents with respect to one
of a plurality of aspects of the application package to be
tested; for each of the at least one data set, analyzes a char-
acteristic relationship of the contents with respect to the
aspect corresponding to the data set to generate characteristic
data for the data set; and determines whether the application
package to be tested is a repackaged application package
according to the characteristic data of the at least one data set
and a search result obtained from a database to generate a
determination result, wherein the search result corresponds to
the characteristic data within a corresponding distance. The
electronic computing system processes the application to be
tested according to the determination result.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a computing environment
security mechanism implemented for a release of an applica-
tion to a marketplace or installation of an application.

FIG. 2 is a schematic diagram of an application having
contents with respect to a plurality of aspects.

FIG. 3 is a flowchart of a computing environment security
method according an embodiment.

FIG. 4 is a flowchart of an embodiment of a computing
environment security method applied to a server system oftfer-
ing services of releasing software.

FIG. 5 is a flowchart of an embodiment of a computing
environment security method applied to an electronic device
with software to be installed.

FIG. 6 is a block diagram of a software structure of a
computing environment security method according to an
embodiment.

FIG. 7 is a block diagram of a fundamental structure of an
electronic computing system for implementing a computing
environment security method according to an embodiment.

FIG. 8 is a schematic diagram related to an analysis of
contents with respect to a user interface aspect in an applica-
tion package according to an embodiment.

FIG. 9 is a flowchart of a similarity evaluation process on
contents with respect to a user interface aspect according to an
embodiment.

FIG. 10 is a flowchart of a similarity evaluation process on
contents with respect to a program operation aspect according
to an embodiment.

US 9,053,322 B2

3

FIG. 11 is a flowchart of a similarity evaluation process on
contents with respect to a resource usage aspect according to
an embodiment.

FIG. 12 is a block diagram of an electronic device and a
server system implementing a computing environment secu-
rity method according to an embodiment.

In the following detailed description, for purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the disclosed embodi-
ments. It will be apparent, however, that one or more embodi-
ments may be practiced without these specific details. In other
instances, well-known structures and devices are schemati-
cally shown in order to simplify the drawing.

DETAILED DESCRIPTION

Embodiments of a computing environment security
method and an electronic computing system are provided
below.

FIG. 1 shows a schematic diagram of a computing envi-
ronment security mechanism implemented when an applica-
tion is to be released to the public or installed. Referring to
FIG. 1, in a computing environment such as an application
marketplace where a server system 10 provides software
downloading, the server system 10, such as an independent
server, a distributed server system or a cloud system, has a
sieving mechanism 11. Before an application is released to
the public, it is evaluated whether the application (e.g., APP1
or APP2) is a repackaged application with the assistance of
the sieving mechanism 11. Accordingly, it is then determined
whether the application is malware having malicious code to
further determine whether the release of the application is
allowed or prohibited. However, it is possible that in the
computing environment, e.g., an application marketplace,
other websites or sources, where an application can be down-
loaded and used, the sieving mechanism 11 is not included. To
prevent risks of installing malware in uninformed circum-
stances, a sieving mechanism 21 can also be implemented on
an electronic device 20. The sieving mechanism 21, before an
application (e.g., APP3)is installed, can provide the function-
ality similar to those of the sieving mechanism 11 to deter-
mine whether to allow or decline installation of the applica-
tion.

The approach that a hacker or software plagiarist cracks or
modifies legitimate software of others and repackages the
cracked or modified application is referred to as “repackage”.
By propagating malware and plagiarizing software, a hacker
or a software plagiarist profits or achieves an unjust intention.
A fundamental method of modifying software is adding pro-
gram code of a modifier or hacker on a basis of an original
program, inferring that the level of deletion or modification of
functions or program code of the original program is minimal
(e.g., usually not modified at all). The repackage is a common
occurrence on an Android Market (or referred to as Google
Play). Although an Android program package (APK) on the
Android Market adopts a Safe Sign mechanism (i.e., signed
by a developer) for checking other parts, the APK is not
encrypted actually. Therefore, an original signature (e.g., a
signature A) can be easily removed from a cracked applica-
tion package (e.g., an APK), and a new signature (e.g., a
signature B) can be signed after adding malicious code. With
the new signature, the repackaged application can be
approved for release to the public and may then be propagated
very rapidly.

Based on the likeliness of above similarities in contents of
the original program and the repackaged program, the sieving
mechanism 11 or 21 may accordingly determine whether an

15

35

40

45

4

application is a repackaged application. As shown in FIG. 2,
an application may be regarded as contents with respect to a
plurality of aspects, e.g., contents with respect to a user inter-
face aspect, contents with respect to a program operation
aspect, contents with respect to a resource usage aspect, or
contents with respect to other aspects. A repackaged applica-
tion is substantially larger or equal to an original program
with respect to comparisons of contents with respect to vari-
ous aspects.

Further, programs generally have similarity for a certain
proportion. For example, programs may generally employ
same application program interfaces (API) or same user inter-
face (UI) layouts. A characteristic of a repackaged application
is usually achieved by adding or implanting intended mali-
cious code to an original program, and a relationship of rep-
resentative parameters between a repackaged application and
the original program of the repackaged application can be
expressed as:

AppO< AppR Relationship (1)

That is, the associated contents covered by the original
program (AppO) are included in the associated contents of
the repackaged application (AppR). Thus, in an embodiment,
the sieving mechanism 11 or 21 may compare the contents
with respect to various aspects of the programs to accordingly
determine whether an application is a repackaged applica-
tion.

FIG. 3 shows a flowchart of a computing environment
security method according to an embodiment. The aforemen-
tioned sieving mechanism 11 or 21 may be implemented in an
electronic computing system (e.g., a server system or an
electronic device) of an embodiment in FIG. 3 to sieving a
repackaged application.

In step S10, an electronic computing system dissolves an
application package to be tested to obtain at least one data set.
The application package includes contents with respect to a
plurality of aspects (e.g., as those shown in FIG. 2). Each of
the at least one data set is the contents with respect to one of
the aspects. For example, step S10 is performed to the con-
tents with respect to at least one, two, or three aspects from a
user interface aspect, a program operation aspect and a
resource usage aspect to obtain at one corresponding data set,
which is later to be analyzed in step S20. For example, the
contents may be parsed in step S10 to obtain the at least one
data to be utilized later.

In step S20, it is evaluated whether the application package
is a repackaged application according to the at least one data
set. step S20 includes steps S21 and S23.

In step S21, for each of the at least one data set, character-
istic relationships of the contents with respect to the corre-
sponding aspect of the data set are analyzed, and character-
istic data for the data set are generated according to the
characteristic relationships. For example, for the data set of
the contents with respect to the user interface aspect, relation-
ships of a user interface layout or hierarchies of user interface
elements are analyzed, and the analyzed relationships are
quantized to accordingly generate characteristic data
described by such as a matrix or an array, which is to be
utilized in a subsequent similarity evaluation process in step
S21. Details of corresponding analysis on the data set of the
contents with respect to different aspects of the application
are to be described shortly in embodiments below.

In step S23, it is determined whether the application pack-
age to be tested is a repackaged application package accord-
ing to the characteristic data of the at least one data set and a
corresponding search result obtained from a data base. The
search result corresponds to the characteristic data within a

US 9,053,322 B2

5

corresponding distance. The electronic computing system
may process the application package to be tested according to
a determination result of step S23. In another embodiment,
the determination result is outputted after determining
whether the application package to be tested is a repackaged
application package.

In step S23, for example, the database includes character-
istic data associated with the aspects corresponding to a plu-
rality of known application packages, e.g., characteristic data
associated with the user interface aspect of a plurality of
known applications. Further, in step S23, as obtained from the
database, the search result is the characteristic data of a
known application, and corresponds to the characteristic data
of'one or more data sets of the application package to be tested
within a corresponding distance. Different data sets may cor-
respond different distances as criteria for searching.

Therefore, the searched result obtained from the database
may be based on the Relationship (1): AppO = AppR. A pos-
sible known application is identified from the database and
assumed as the original program AppO. Also assume that the
characteristic data of a particular data set of the application
package to be tested is expressed in a matrix or vector, e.g.,
V1=[ml, m2,..., mk], where m1 to mk are numerical values,
and ks an integer greater than 1. The database is searched for
avector (or more than one vectors) within a distance from the
vector V1, and the found one vector or vectors (may be
regarded as a vector set) are denoted as Vx, which corre-
sponds to one or more known application packages (may be
regarded as an application package set) denoted as Ax indi-
cated in the database. For example, for the characteristic data
of'a particular data set, a distance (or a measure of the differ-
ence) between the vector 1 and the vector Vk in the database
can be defined and computed mathematically based on one
kind of definitions of distances between vectors (e.g., Euclid-
ean distance and the derivatives) or similarities.

For example, a cosine numerical calculation is performed
on the vectors V1 and Vs to obtain a cosine similarity. That is,
the cosine similarity=(V1*Vs)/(IV11*|Vsl). The calculated
cosine value is a similarity index o.. When a=1, it means that
the similarity between the two vectors is high (with a mini-
mum distance); when a=0, it means the similarity between
the two vectors is small (or regarded as with a greatest dis-
tance or irrelevant). Therefore, in one embodiment, a corre-
sponding distance range can be set. For example, when the
similarity (or distance) between the vectors V1 and V2 is
between 0.9 and 1, the similarity is considered as within the
corresponding distance, and so the vector Vs (e.g., may be
regarded as one or more vectors) and the corresponding appli-
cation package (e.g., may be regarded as one or more appli-
cation packages) are identified from the database to be
regarded as the search result. It is determined whether the
application package is a repackaged application package
according to the search result, e.g., the number of the identi-
fied application packages Vx or the result having the mini-
mum distance. In another embodiment of step S23, corre-
sponding search results may also be identified for the
characteristic data of multiple data sets of the application
package to be tested to determine whether the application
package is a repackaged application package.

In yet another embodiment, step S23 may include step S33
and step S35. In step S33, the similarity of the application
package to be tested is evaluated according to the character-
istic data of the at least one data set, and the corresponding
search result that is obtained from a database and corresponds
to the characteristic data within a corresponding distance. The
similarity of the application package to be tested is the simi-

10

15

20

25

30

35

40

45

50

55

60

65

6

larity between the application package to be tested and the
corresponding application package indicated in the database.

In step S35, it is determined whether the application pack-
age to be tested is a repackage application package according
to the similarity of the application package to be tested. The
electronic computing system may process the application
package to be tested according to a determination result of
step S35. In an alternative embodiment, the determination
result is outputted after determining whether the application
package to be tested is a repackage application package.

FIG. 4 shows a flowchart of a computing environment
security method applied to a server system offering services
of releasing software according to an embodiment. In step
S110, in response to a software release request, the server
system receives the application package to be tested. In step
S120, the sieving method explained in the embodiment in
FIG. 3 is performed by the server system. In step S130, it is
determined whether the application package to be tested is a
repackaged application package and a malicious program
according to the determination result. If the application pack-
age to be tested is determined as a repackaged application
package and a malicious program, step S135 is performed. In
step S135, the server system declines the release request to
prohibit the application package to be tested from being
released. Or else, step S137 is performed, in which the server
system allows the release of the application package to be
tested.

FIG. 5 shows a flowchart of a computing environment
security method applied to an electronic device with software
to be installed according to an embodiment. In step S210, the
electronic device receives the application package to be
tested. In step S220, in response to a software installation
request, the electronic device performs the sieving method in
the embodiment in FIG. 3 before the application package is to
be installed. In step S230, it is determined whether the appli-
cation package to be tested is a repackaged application pack-
age and a malicious program according to the determination
result. If the application package to be tested is determined as
a repackaged application package and a malicious program,
step S235 is performed. In step S235, the electronic device
declines the software installation request. Or else, step S237
is performed, in which the electronic device allows the instal-
lation of the application package to be tested.

FIG. 6 shows a block diagram of a software structure of a
computing environment security method according to an
embodiment. A computing environment security system 100
includes a preprocessing module 110, an analysis module
120, a similarity evaluation module 130, a determination
module 140 and a database module 150. For example, also
with reference to FIG. 3, the preprocessing module 110 per-
forms step S10 in FIG. 3, the analysis module 120 performs
step S21, the similarity evaluation module 130 performs step
S33, the determination module 140 performs step S35, and
the database module 150 implements the database utilized in
step S23.

The embodiment in FIG. 6 depicts relationships analyzed
by the analysis module 120 for the contents with respect to
three aspects of the application package, and so correspond-
ing operations of the preprocessing module 110 and the simi-
larity evaluation module 130 are performed. For example, the
preprocessing module 110 dissolves the application package
by parsing to obtain three data sets. The three data sets are
respectively provided to three sub-modules of the analysis
module 120: a user interface aspect analysis module 121, a
program operation aspect analysis module 123, and a
resource usage aspect analysis module 125. The performing

US 9,053,322 B2

7

sequence of the sub-modules in the analysis module 120 may
be in a parallel approach or other approaches as desired.

Further, to perform the corresponding operations, the simi-
larity evaluation module 130 includes three sub-modules: a
user interface aspect similarity evaluation module 131, a pro-
gram operation aspect similarity evaluation module 133, and
a resource usage aspect similarity evaluation module 135.
The three sub-modules of the similarity evaluation module
130 respectively receive the characteristic data generated by
the three sub-modules of the analysis module 120, and
respectively determine similarity metadata with respect to the
user interface aspect, similarity metadata with respect to the
program operation aspect and similarity metadata with
respect to the resource usage aspect. Based on the similarity
metadata, the similarity evaluation module 130 determines
the similarity of the application package to be tested to allow
the determination module 140 to accordingly determine
whether the application package is a repackaged application
package. In another embodiment, the determination result is
outputted after determining whether the application package
is a repackaged application package.

In another embodiment, the sub-modules in the analysis
module 120 may upload the characteristic data obtained to the
database to perform the searching process. The similarity
evaluation module 130 may then obtain the corresponding
search result from the database module 150.

In another embodiment, the analysis module 120 may also
be designed to analyze relationships between the contents
with respect to two aspects of the application package, and
includes the two sub-modules: the user interface aspect the
analysis module 121 and the program operation aspect analy-
sis module 123.

FIG. 7 shows a block diagram of a fundamental hardware
structure of an electronic computing system for implement-
ing a computing environment security method according to
an embodiment. Referring to FIG. 7, an electronic computing
system 200 includes a control unit 210, a communication unit
220, a storage unit 230, and a display unit 240. For example,
the control unit 210 is capable of implementing the comput-
ing environment security method according to the embodi-
ment in FIG. 3. In an embodiment, the electronic computing
system 200 is a server system implemented as a single server
or is a distributed server system including multiple servers.
Each of the units may be implemented as a server. For
example, the storage unit 230 may be regarded as a database
and serves as a database server for step S23. Alternatively, the
server system may be a cloud computing system, with the
units of the cloud computing system being cloud servers. In
yet another embodiment, the electronic computing system
200 may be implemented as an electronic device, such as a
smart device including a smart phone, a tablet computer or a
smart TV, a navigation device, or any device with communi-
cation functionality which supports application download
and installation. For example, the electronic device receives
an application package via the communication unit 220, or
obtains the search result from an external database through a
communication link (e.g., a wired or wireless network). The
electronic computing system 200 may be also adapted for
design requirements for a target product to include other
devices.

Further, the exemplary software structure in FIG. 6 may
also be implemented by the electronic computing system 200
of'the embodiment in FIG. 7. For example, the preprocessing
module 110, the analysis module 120, the similarity evalua-
tion module 130 and the determination module 140 are imple-
mented by the control unit 210 (e.g., a processor or multiple
servers), and the database module 150 is implemented by the

10

15

20

25

30

35

40

45

50

55

60

65

8

storage unit 230 or an external storage unit (e.g., a database in
a storage device or an external database server). The commu-
nication unit 220 (e.g., a communication circuit in a server)
enables the preprocessing module 110, the analysis module
120, the similarity evaluation module 130 and the determina-
tion module 140 to connect to an external database.

Examples of the analysis on the data set of the contents
with respect to different aspects of the application package in
step S21 and the evaluation process in step S23 in FIG. 3 are
described below. Further, the analysis module 120 and the
similarity evaluation module 130 in FIG. 6 may be accord-
ingly implemented.

Analysis for User Interface Aspect

Analysis on the contents with respect to the user interface
aspect, in an embodiment can be performed with respect to at
least one of the following, such as a user interface layout,
hierarchies of user interface elements, associated events, and
APIs, to obtain the similarity between the application pack-
age to be tested and the known application.

InFIG. 8, aview 300 corresponding to a user interface code
of the application package includes user interface elements
such as function selection buttons B1 and B2, and a command
row M1, which respectively correspond to events 1, 2, and 3.
Therefore, the user interface or the user interface elements in
the views of the application package and associated usage
information, e.g., relationships between the elements, pro-
cessed/processing event contents or operations, are analyzed.
After the analysis, descriptive characteristic relationships for
comparisons can be obtained to generate the corresponding
characteristic data, or referred to as metadata. For example,
the characteristic data can be described by a matrix, an array,
or other encoding methods to facilitate searching and com-
parison from the database.

FIG. 8 shows a schematic diagram of an exemplary user
interface layout. The user interface layout includes graphics,
icons, and options, relative positions and corresponding rela-
tionships of the graphics, icons and options, and elements
related to event processing (e.g., menu M1 and buttons B1
and B2). Further, the API(s) called in processing functions for
events and related information of the program can also be
involved for analysis. The characteristic data obtained from
the analysis is provided for the similarity evaluation in step
S33 or to the similarity evaluation module 130 for further
processing.

In an embodiment, regarding the user interface aspect, step
S21 may include: analyzing the hierarchies of the views and
the elements in the user interface indicated in the first data set
to determine a characteristic relationship, and generating a
first characteristic data for the first data set according to the
characteristic relationship. In an alternative embodiment,
step S21 may further include: analyzing executable code
associated with the elements and the layout in at least one the
user interface in the first data set to obtain relationships
between the elements and k corresponding processing events,
and names and numbers of the corresponding APIs, to deter-
mine a characteristic relationship, and generating a second
characteristic data for the first data set according to such
characteristic relationship. To correspond to step S21 in the
above embodiments, step S33 may include: determining
similarity metadata with respect to the user interface aspect
according to the first characteristic data, the second charac-
teristic data of the first data set, and the search result obtained
from the database and corresponding to the characteristic data
within a corresponding distance. The similarity of the appli-
cation package to be tested is determined based on the simi-
larity metadata with respect to the user interface aspect. Fur-

US 9,053,322 B2

9

ther, for the user interface aspect, step S21 may also generate
only one type of characteristic data or a greater number of
type of characteristic data.

Referring to FIG. 9, in step S33 based on the above
embodiment, the similarity between the application package
(e.g., referred to as Al) to be tested and a known application
package (may be regarded as an application package set) can
be obtained from the database. As shown in step S310, it is
determined whether the application package A1 to be tested
and the application package Ax are similar. For example, a
program interface, e.g, referred to as Layout(Ax, Al), can be
configured for calculating the similarity between Ax and Al.
According to the concept of abovementioned Relationship
(1), assuming that A1 is a repackage of Ax, regarding A1 and
Ax, the hierarchies of the user interface and the relationships
and number of elements of the repackage program theoreti-
cally include (greater than or equal to) those of the original
program. If Layout(Ax, A1) determines that the difference is
beyond a tolerable range, it means that the result generated
from statistics or associated calculations of the component
information in the layout of the user interface is too large such
that Layout(Ax, A)=F (false). Accordingly, as shown in step
S315, it means that the application package A1 is dissimilar to
the application package Ax. When Layout(Ax, A1)=T, i.e.,
the result is affirmative, step S320 is performed. In step S320,
the comparison process is continued using the API(s)
employed in the processing functions for the events. For
example, a program interface referred to as Api(Ax, Al) can
be designed for calculating the similarity associated with the
application program interface aspect of Ax and Al.

For example, Layout(Ax, Al) may include the following
relationship (to be referred to as Relationship (2)): if the
conditions of a layout element set of Ax < a layout element set
of A1, and (the number of layout elements of A1)-(the num-
ber of layout elements of Ax)=d1 are true, then Layout(Ax,
A1)=T (i.e., Ax and Al are determined as being similar),
wherein d1 is as a condition for a corresponding distance (or
referred to as a difference) with respect to the layout element
aspect. Layout(Ax, Al) searches the database for any appli-
cations Ax included in A1 but with a distance smaller than d1
for comparison and determines whether Ax is possibly the
original program from which A1l is repackaged and gener-
ated.

For example, Api(Ax, A1) may include the following rela-
tionship (to be referred to as Relationship (3)): if conditions of
an API set associated with the user interface of Ax = an API
set associated with the user interface of A1, and (the number
of the APIs of Al)-(the number of the APIs of Ax)=d2 are
true, then Api(Ax, A1)=T (i.e., Ax and Al are determined as
being similar), wherein d2 indicates a condition for a corre-
sponding distance of the API with respect to the layout ele-
ment aspect. Api(Ax, Al) searches the database for any appli-
cations Ax included in A1 but with a distance smaller than d1
for comparison and determines whether Ax is possibly the
original program from which A1l is repackaged and gener-
ated.

When Layout(Ax, A1)=T and Api(Ax, A1)=T, it means
that the application packages Ax and A1 have a high level of
similarity, and so step S330 is performed to determine simi-
larity metadata Sim1 associated with (Ax, Al). Therefore,
this embodiment may be regarded as step S33 in an embodi-
ment that, the similarity metadata corresponding to the user
interface aspect is generated according to the first character-
istic data and the second characteristic data for use in step S35
or the evaluation module 130.

Further, in another embodiment, the differences of APIs
(with the differences in the corresponding number of APIs

20

30

40

45

65

10
being smaller than d2) between Al and Ax obtained by Rela-
tionship (3) can be recorded, e.g., stored in a report document.
Therecorded information may serve as reference information
for searching the position of malicious code in the program
code during dynamic inspections of malicious code.

In other embodiments, the metadata utilized by Layout()
and Api() may also be utilized for establishing indexes of the
foregoing database. Thus, with respect to the distance param-
eters, the characteristic data of the appropriate and known
applications indicated in the database can be retrieved for
comparison with the characteristic data of A1 to further iden-
tify the appropriate Ax.

Regarding Program Operation Aspect

Regarding the program operation aspect, the APIs or data
utilized in the code can be analyzed. In an embodiment, step
S21 may include:, analyzing relationships of parameters and
parameter contents employed by the APIs in the executable
code in the data set of the contents with respect to the program
operation aspect to determine a characteristic relationship,
and generating characteristic data for the data set according to
the characteristic relationship.

In another embodiment, step S21 may include: analyzing a
data flow of executable code of the data set of the contents
with respect to the program operation aspect to determine a
plurality of input data (or referred to as source data) in the data
set, the processes (or referred to as processing paths) under-
gone by the input data, and the final operations (or referred to
as final sinks) as a characteristic relationship, and generating
the characteristic data for the data set according to the char-
acteristic relationship. The processes undergone by the input
data and the corresponding final operations are associated
with the APIs in code flow of the data set.

The analysis of the data flow with respect to the program
operation aspect facilitates the determination for a repack-
aged application package or even for malicious code. For
example, step S21 (or the analysis module 120) acquires and
analyzes information with respect to the program operation
aspect from the executable code of the application core (e.g.,
from the data set generated in step S10) such as: APIs to be
called, input/output destinations and processing paths of sen-
sitive data in the program code, program core segments and so
on.

For example, after the analysis of the program code, a code
flow of a particular piece of data is expressed in pseudo code
as below:

Declaring datal as an integer;

data2=API1 (datal);

data3=API2 (data2);

API3 (data3);

In this example, the source data is “datal”, the processing
path is denoted as [API1, API2], and the final sink is API3,
and the characteristic relationship can be expressed as {datal,
[API1, API2], API3}. Program code generally includes a
plurality of pieces of source data, corresponding data paths,
and final sinks. The set of the characteristic relationships of
the source data may be utilized to generate the characteristic
data with respect to the program operation aspect of the
application package to be tested, or may be referred to as
metadata. For example, the characteristic data can be
described by a matrix, an array, or other encoding methods to
facilitate searching and comparison from the database. Fur-
ther, the characteristic data is provided for use in step S33 or
the similarity evaluation module 130.

For computing environment security, associated sensitive
data may be analyzed in addition to common source data. For
example, sensitive data for an application program of a
mobile communication device (e.g., a cell phone or a tablet

US 9,053,322 B2

11

computer), may include such as a serial number of the device,
an International Mobile Equipment Identity (IEMI), a per-
sonal identification number (PIN), communication records,
and so on. For example, an analysis on the program code
discovers that an API API_1 reads a phone serial number
mCode (e.g., denoted as API_1(mCode)), which is then sent
to a particular Internet destination location (e.g., denoted as
API_2(URL)) by the API API_2 after going through a series
of processing paths. Thus, the characteristic relationship of
the program processing data can be represented by {mCode,
[API_1(mCode), . . .], API_2(URL)}, and the characteristic
data can be generated accordingly.

In some embodiment, the analysis on the data flow associ-
ated with the program operation aspect may be implemented
by taint analysis which is an approach of dynamic analysis.
The taint analysis can track predefined sensitive data or haz-
ardous data operations, and record a flow of data distribution
and the data sink, to accordingly issue an alert. For example,
the data sink may be a data sink involving a program opera-
tion possibly leaking the data, e.g., the Internet or an external
memory card. Thus, the techniques applying the flow from
the source data to the data sink in the taint analysis may be
utilized to identify the characteristic relationships of software
and to be further applied to step S33 or the analysis module
123. Further, data leakage may also be monitored to identity
a malicious program.

The characteristic data generated with respect to the pro-
gram operation aspect in step S21 or by the analysis module
120 in the embodiments may be further processed in step S33
or by the similarity evaluation module 130. Referring to FIG.
10, step S33 or the similarity evaluation module 130 can
perform evaluation, based on the embodiment, of the similar-
ity between the application package (e.g., Al) to be tested and
a known application package (or regarded as an application
package set) found from the database. Referring to step S410,
aknown application package Ax and the application package
Al to be tested are compared according to the characteristic
data for the program operation aspect, such as the processing
path from the source data to the data sink. In step S410,
existing records in the database are utilized for comparison.
In addition, the range for comparison in some embodiments
may be the range found by the analysis of the application
package to be tested with respect to the other aspect, e.g., the
application package set Ax such that Layout()=T or Api()=T
in the foregoing static inspection. Further, a program inter-
face, e.g., referred to as a function Path(Ax, Al), may be
designed for calculating the similarity with respect to data
flows between Ax and Al.

For example, Path() may include the following relation-
ship (to be referred to as Relationship (4)). When conditions
of a processing path set of Ax = a processing path set of A1,
and (the number of processing paths of Al)-(the number of
processing paths of Ax)=d3 are true, then the function Path
(Ax,A1)=T (i.e., Ax and A1 are determined as being similar),
wherein d3 is a condition of a corresponding distance (or
referred to as a difference) with respect to the processing path
aspect. The function Path(Ax, A1) searches the database for
any applications Ax included in Al but with a distance
smaller than d3 for comparison to determine whether Ax is
possibly the original program from which A1 is repackaged
and generated.

As shown in step S430, it is determined whether the pro-
cessing paths are similar. When the function Path(Ax, A1)=F,
it means that the application package to be tested Al is dis-
similar to the application package Ax. When the function
Path(Ax, A1)=T, it means that a similar known application
package that matches the condition is found, and the applica-

25

30

40

45

12

tion packages Ax and A1 have a high level of similarity. Thus,
step S440 is performed to determine similarity metadata
Sim?2 for Ax and Al.

Regarding Resource Usage Aspect

In an embodiment, regarding the resource usage aspect,
step S21 may include: analyzing the relationship of resources
utilized by the program indicated in the data set of the
resource aspect utilized by the program to determine a char-
acteristic relationship, and generating the characteristic data
for the data set according to the characteristic relationship.
The resources utilized by the program indicate data utilized
by the program, and may be regarded as relationships of
resources, permissions, or non-code content requested in the
program code. For example, non-code content includes
hyperlinks, scripts, and content files employed in the program
code.

For example on an Android platform, an application pack-
age is in the form of an APK file (a packaged format) includ-
ing a plurality of dex files (executable code), properties (in-
cluding images, data or other files) and a manifest file. The
manifest file includes settings for permission and resource
usage as well as program declaration, described in XML.
Thus, step S10 or the preprocessing module 110 can then
generate the data set for the resource aspect utilized by the
program.

For example, regarding the resource aspect utilized by the
program, step S21 or the analysis module 120 parses the
names and number of the requested resource or permission
settings, expressed in XML, and merges them with other
program-related parameters as the characteristic data.

In another embodiment, step S21 or the analysis module
120 generates characteristic data from other resource data
such as images, audio, or other types of data by a hash func-
tion in order for step S33 or by the similarity evaluation
module 130 to perform evaluation.

Referring to FIG. 11, step S33 or the similarity evaluation
module 130 can perform evaluation, based on the embodi-
ment, of the similarity between the application to be tested (or
referred to as Al) and a known application package (or
regarded as an application package set) Ax found from the
database. Regarding the resource usage aspect, it is deter-
mined whether the application package Al is similar to the
application package Ax, as shown in step S510. For example,
a program interface such as a function Per(Ax, Al) is
designed for calculating the similarity with respect to permis-
sion between Ax and A1. When Per(Ax, A1) determines that
their difference is beyond a tolerable range, it means that the
application package A1l to be tested is dissimilar to the appli-
cation package Ax, as in step S515. When the function Per
(Ax, A1)=T, i.e., the result is affirmative, the similarity of
another resource aspect is further evaluated. In step S520, the
metadata related to the application package Al is obtained
from the database, e.g., the foregoing metadata described in
XML. In step S530, similarity metadata Sim3 for the meta-
data related to the application package Ax is determined. In
step S540, similarity metadata Sim4 of other media files (e.g.,
image files) is determined.

In step S510, for example, the application package Al to be
tested and the application package Ax obtained from the
database are compared. In continuation from the concept of
Relationship (1), if the application package A1 is a repackage
of a certain program, the permission setting for the applica-
tion package A1 to be tested is expected to be greater than or
equal to that of the original program. Therefore, the function
Per(Ax, A1) may include the following relationship (to be
referred to as Relationship (5)). When conditions of a permis-
sion set of Ax —a permission set of Al, and (the number of

US 9,053,322 B2

13

permissions of Al)—(the number of permissions of Ax)=d4
are true, then Per(Ax, A1)=T (i.e., Ax and A1l are determined
as being similar), wherein d4 is a condition of a correspond-
ing distance (or referred to as a difference) associated with the
permission aspect. The function Per(Ax, Al) searches the
database for any applications Ax included in Al but with a
distance smaller than d4 for comparison to determine whether
Ax is possibly the original program from which A1 is repack-
aged and generated.

Whether Application Package is Repackage

With steps S21 and S23, or the analysis module 120 and the
similarity evaluation module 130 in the above embodiments,
one or more similarity metadata can be generated in order for
step S35 or the determination module 140 to determine
whether the application package to be tested is a repackage. In
an embodiment, the similarity metadata (e.g., one or more of
Siml1 to Sim4) generated by step S23, step S33, or the evalu-
ation module 130 may be utilized for evaluating the similarity
index a between Ax and Al, so as to further determine
whether the application package A1l is a repackage or provide
a determination result of another property. For example, all
the metadata (e.g., Sim1 to Simd4) are arranged in a vector, and
the foregoing cosine value calculation is performed on the
vector for the metadata and V1 (converted to a numerical
arrangement) found from the database to calculate the simi-
larity index c.. Further, weighting may be applied to each of
the metadata, for example, to reflect the contribution of the
metadata with different weights, and the cosine value is then
calculated to be the similarity index a.

An evaluation result of the similarity index o is represented
as below.

When a=f (0<p<1), where § represents a predetermined
similarity threshold, it is concluded that Ax and A1 are similar
programs. That is, the determination result indicates that the
application package A1 may be regarded as a repackage of
Ax.

When a<f, it means that the application package Al is a
new program. That is, the determination result indicates that
the application package A1 is not regarded as a repackage of
Ax.

Step S35 or the determination module 140 can provide the
determination result accordingly. Referring to FIGS. 4 and 5,
step S130 or step S230 may further determine whether the
application package Al to be tested is a malicious program
according to the determination result. For example, in an
embodiment, it is assumed that the determination result indi-
cates that the application package A1 may be regarded as a
repackage of Ax. When the inspection indicates that A1 is not
an upgrade version of Al, and is not an application of the
same author or the same company, it is highly possible that the
application package A1 to be tested is a malicious program or
aplagiarized program. Therefore, the application package A1l
is declined from being released (as in step S135) or from
being installed (As in step S235). Further, information of the
application package Al to be tested can be recorded in the
database, or the application package Al to be tested can be
further analyzed to confirm whether a new type of malicious
program exists therein. In an alternative embodiment, when
Al is not a repackage of Ax, other associated characteristic
data may be further analyzed to confirm whether Al is a
malicious program or a normal program.

In other embodiments, the difference obtained from the
analysis with respect to one or more aspects of the application
package Al to be test (e.g., step S21 or the analysis module
120) may be employed to evaluate whether the application
package Al to be tested is a malicious program. The infor-
mation that may be used for the evaluation includes: infor-

10

15

20

25

30

35

40

45

50

55

60

65

14

mation related to the processing path(s) that would cause a
difference between the application package Ax and the appli-
cation package A1 to be tested where Path(Ax, A1)=T; infor-
mation that causes a difference in the permission setting
(corresponding to Per()); information that causes a difference
in the user interface layout (corresponding to Layout()); or
information that causes a difference in the API (correspond-
ing to Api()). Further, the one or more processing paths that
cause the difference may be directly compared with the char-
acteristic data indicating data leak by known malicious pro-
grams so that malicious code or the type of a malicious
program can be more clearly and earlier identified.

In other embodiments, it is determined whether the appli-
cation program can be released to the marketplace or installed
to a device, according to the determination result from above
under predetermined criteria. Further, it may be determined
whether other inspections are to be carried out according to
policies of a marketplace or a service provider regardless of
whether the application can be released or installed.

In another embodiment, the refusal of release or installa-
tion of the application package, or whether the evaluation
process in step S20 is to be performed, can also be proceeded
in cooperation with an existing mechanism of the computing
platform. For example on an Android platform, an application
package is in the form of an APK file (in a package format)
including a plurality of dex files (executable code), properties
(including images, data or other files), and a manifest file. The
manifest file includes setting and program declaration for
permission and utilization of associated resources, and is
described in XML.

For example, step S10 or the preprocessing module 110
parses the APK file, and parses and manages the associated
information in the dex files, properties, and manifest file
correspondingly required by the subsequent step S20 or the
analysis module 120 into the data sets (or referred to as
metadata) with respect to the various aspects (e.g., one or
more of the user interface aspect, the program operation
aspect, and the resource usage aspect). In an embodiment,
step S10 or the preprocessing module 110 parses the various
parts of the APK file upon receiving an APK A1 to be tested,
and a preliminary sieving process is then performed using the
security information (e.g., the APK name, developer infor-
mation, signature and so on) before the related information
from the parsing is passed to the subsequent step S20 or the
analysis module 120.

The sieving process may be realized by a comparison func-
tion Mt(APKName, Sign_Key). APKName represents the
APK name and the developer information, and Sign_Key
represents the key used for signing. Thus, a combination of
APKName and Sign_Key may be utilized to verify the iden-
tity of the APK and the developer.

When the comparison function Mt() replies (T, T) indicat-
ing that the APK A1 to be tested is a known program with a
legal signature key, the APK A1 need not to be further tested.
Theresult that the APK A1 is a known program means that the
APK A1 is previously tested and a corresponding entry is
recorded in the database. In addition, the legal signature
means that the program contents have not been modified and
the integrity of the program contents is maintained. Thus, the
APK A1 need not to be further tested. However, a comparison
needs to be carried out to determine whether the APK A1 to be
tested is on a blacklist. The APK A1 is allowed for release or
installation if it is not on the blacklist; otherwise the APK Al
recorded in the blacklist is declined from installation.

A second situation of Mt()=(T, F) indicates that the APK
Al is a known application by a known developer with how-
ever a failed verification for the signature key. It means that

US 9,053,322 B2

15

the program has been tampered or a transmission error may
have occurred. Nonetheless, the faulty signature information
infers that the integrity of the program is questionable, and so
a next step of inspection is unnecessary and the APK Al is
directly declined from being released or installed.

A third situation includes Mt()=(F, T) or (F, F). Mt()=(F,
T) indicates that the signature key is correct with however the
program name being unrecorded, it means that the APK A1 to
be tested should be a new program in need of further analysis
and tests. Mt()=(F, F) means that the program is a new
program with a name key information unrecorded in the
database, and similarly needs further analysis and tests. For
the third situation, the data set obtained by step S10 or the
preprocessing module 110 is next processed by step S20, as
shown in FIG. 3.

The above embodiment related to step S10 or the prepro-
cessing module 110 under the Android platform can find out
application programs that are unnecessary to be further
tested. However, the above embodiment is for exemplary
purpose merely and the embodiments of the computing envi-
ronment security method are not limiting to this.

In other embodiments, statistical approaches can be
employed to obtain the characteristic data for the data set, as
indicated in step S21, generated according to the character-
istic relationship obtained by analyzing the application pack-
age to be tested, or to obtain the characteristic data in the
database utilized in step S23. For example, for establishing
the database, after the known application packages such as
APK1, APK2 and APK3 are parsed, the number of times
being used, the number of times being called, or other con-
ditions of being referred to of the program components of one
APK are statistically calculated and quantized, e.g., by the
foregoing vector, array, or matrix, to serve as the character-
istic data of the APK. For example, Table-1 lists program’s
descriptions with respect to the user interface aspect, the
program operation aspect, and other aspects, e.g., the num-
bers of activities, services, and views in an Android program.
For the APK1, the characteristic data is [4, 2, 2, 2, 1], and so
forth. Table-2 lists the usage of one or multiple APIs, e.g.,
classes and class methods of one or different APIs. For an
application package to be tested, the same approach may also
be adopted to obtain the corresponding characteristic data to
facilitate the foregoing searching in the database.

TABLE 1
Number APK1 APK2 APK3
Activity 4 3 6
Service 2 3 1
View, TextView, Button 2 1 1
Input Event: onClick() 2 1 1
onLongClick() 1 0 3
TABLE 2
API to be used APK1 APK2 APK3
Landroid/app/ProgressDialog 2 1 3
Ljava/net/URL;->openConnection()Ljava/ 1 2 0
net/URLConnection
Landroid/widget/Toast 2 1 1

Lad/notify/Downloader 0 1 0

In other embodiments, the statistics of the data obtained by
parsing the APKs are as shown in Table-1 and Table-2. The
statistical results generated from the contents related to the

10

15

20

25

30

35

40

45

50

55

60

16

calling of APIs after the parsing of the corresponding parts in
the dex files can make use of a dictionary of usable APIs for
all the APKSs to produce the characteristic data or metadata for
the APKs, wherein the dictionary of the APIs may be estab-
lished in advance and includes the names of the usable
Android and Java APIs, being arranged in order (or assigned
with numbers). Accordingly, for a known APK or an applica-
tion package to be tested, the statistical results of the entire
scope of its dex files can be described as a vector Vapi=[v1,
v2,v3, ... vk] representing the statistical vector of the APIs
used in the dex files. For example, the element v3 with a value
of 0 in the vector Vapi may represent that the corresponding
API is not used, and k indicates the number of the usable
Android and Java APIs (or the number of the APIs except for
some useless APIs).

Inan embodiment for step S23, weighting can be applied in
a search for a vector Vs corresponding to a vector V1 within
acorresponding distance. Weights w1, w2, . .. and wk, which
may be derived from experience or generalization, can be
applied to values m1, m2, . . . and mk of the vector V1=[m1,
m2, ..., mk] to reflect these values’ respective contributions
and a vector Vs is then searched for with respect to the
weighted vector V1. As an example referring to Table-2, the
method URLConnection is relevant to the network connec-
tion of the APK and the computing environment security, and
so the weight of the method URLConnection can be
increased. In some embodiments, the concept of the weight-
ing is also applicable to the similarity calculation in step S33
and step S35. That is, whether the application package to be
tested is a repackaged application can be determined accord-
ing to different perspectives.

The steps of the computing environment security method
in FIG. 3 or the modules of the software structure for com-
puting environment security may be implemented at an elec-
tronic device or a server system (e.g., an application market-
place), or may be separately implemented at both of the
electronic device and server system in different approaches.
FIG. 12 shows a block diagram of an electronic device 400
and a server system 500 implementing a computing environ-
ment security method according to an embodiment. The elec-
tronic device 400 and the server system 500 respectively
implement communication modules 410 and 510. As shown
in FIG. 12, the server system 500 employs an embodiment of
the computing environment security method to examine
whether an application package is a repackaged application
before releasing the application package to the marketplace.
Further, the electronic device 400 may also implement an
embodiment of the computing environment security method
to independently perform quick inspection to maintain its
security. As shown in the embodiment in FIG. 12, the modules
deployed in the electronic device 400 are analysis modules
for static analysis (e.g., an analysis module for the user inter-
face aspect or the resource usage aspect). Such implementa-
tion differs from the approach of real-time inspection and
monitoring of running applications, which would consume a
great amount of the device end’s resources, thus preventing
excessive power consumption on the limited power of the
mobile device.

The electronic device 400 can search data for comparison.
The electronic device 400 can obtain the characteristic data or
metadata of an application package similar to the application
package A1 to be tested from a database (e.g., the database of
the server system 500 or another database) through a com-
munication link established by the communication module
410, for comparison. If the electronic device 400 determines
that the application package A1 to be tested is a repackaged
application according to the similarity index c obtained from

US 9,053,322 B2

17

the static inspection, the installation is declined without
returning to the server system 500 for further inspection. In an
embodiment, if the electronic device 400 determines that the
application package Al to be tested in a new program, the
characteristic data obtained from the static inspection are sent
back to the database (e.g., a database established in the server
system 500 or another database) and stored therein. For
example, the server system 500 is a distributed server system
or a cloud server system.

In an embodiment, the electronic device 400, such as a
smart device (e.g., a smart phone, a tablet computer or an
Internet television), cooperates with a preload installer so as
to ensure that a user does not overlook a result replied from
the cloud to still install a malicious application from an
unknown source. Further, rather than as in the embodiment in
FIG. 12, the server system 500 and the electronic device 400
may be implemented in various methods with reference to the
implementations in FIG. 3 or FIG. 6.

Moreover, although an Android platform is taken as an
example in the above embodiments, it should be noted that the
computing environment security method, the server system,
and the electronic device according to the above embodi-
ments can be implemented in platforms of various smart
devices or even in computing environment of personal com-
puters.

A computer readable or a computing device readable infor-
mation storage medium is further provided according to an
embodiment. The computer readable or a computing device
readable information storage medium stores at least one pro-
gram or software module for executing the computing envi-
ronment security method of at least one of the above embodi-
ments. When an electronic device including a memory or a
server system (referred to as an electronic computing system)
loads the information storage medium, the electronic com-
puting system executes a plurality of instructions for execut-
ing the computing environment security method of the above
embodiment. For example, the computing environment secu-
rity method of the above embodiment is implemented in a
server system (e.g., as a software marketplace) or an elec-
tronic device (e.g., a cell phone, a tablet computer or an
Internet television). For example, the computer readable or a
computing device readable information storage medium is an
optical information storage medium, a magnetic information
storage medium, firmware, or code transmittable via a net-
work/transmission medium (e.g., air).

It will be apparent to those skilled in the art that various
modifications and variations can be made to the disclosed
embodiments. It is intended that the specification and
examples be considered as exemplary only, with a true scope
of'the disclosure being indicated by the following claims and
their equivalents.

What is claimed is:

1. A computing environment security method, comprising:

a) dissolving an application package to be tested by an
electronic computing system to obtain at least one data
set, wherein each of the at least one data set is contents
with respect to one of a plurality of aspects of the appli-
cation package to be tested, wherein the contents with
respect to the aspects comprise contents with respect to
auser interface aspect, the at least one data set comprises
a first data set, and the first data set is the contents with
respect to the user interface aspect of the application
package to be tested; and

b) evaluating whether the application package to be tested
is a repackaged application package according to the at
least one data set, step (b) comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

¢) for each of the at least one data set, analyzing a charac-
teristic relationship of the contents with respect to the
aspect corresponding to the data set and generating char-
acteristic data for the data set according to the charac-
teristic relationship; and
d) determining whether the application package to be
tested is the repackaged application package according
to characteristic data of the at least one data set and a
search result obtained from a database to generate a
determination result; wherein the search result corre-
sponds to the characteristic data of the at least one data
set within a corresponding distance, and the database
includes characteristic data associated with the aspects
corresponding to a plurality of application packages;

wherein the electronic computing system processes the
application package to be tested according to the deter-
mination result.

2. The computing environment security method according
to claim 1, before the step of dissolving the application pack-
age to be tested, further comprising:

receiving the application package to be tested by a com-

munication unit of the electronic computing system in
response to a software release request;
wherein step (b) is performed by the electronic computing
system; and the electronic computing system is a server
system, which declines the software release request to
prohibit the application package to be tested from being
released when the application package to be tested is
determined as the repackaged application package and a
malicious program.
3. The computing environment security method according
to claim 1, before the step of dissolving the application pack-
age to be tested, further comprising:
receiving the application package to be tested by a com-
munication unit of the electronic computing system;

wherein step (b) is performed by a control unit of the
electronic computing system in response to a software
installation program request before the application
package to be tested is to be installed; and the electronic
computing system declines installation of the applica-
tion package to be tested when the application package
to be tested is determined as the repackaged application
package and a malicious program according to the deter-
mination result.
4. The computing environment security method according
to claim 1, wherein step (d) comprises:
evaluating a similarity of the application package to be
tested according to the characteristic data of the at least
one data set and the search result, wherein the search
result is obtained from the database and corresponds to
the characteristic data of the at least one data set within
the corresponding distance; wherein the similarity ofthe
application package to be tested is a similarity between
the application package to be tested and an application
package indicated in the database which corresponds to
the search result; and
determining whether the application package to be tested is
the repackaged application package according to the
similarity of the application package to be tested;

wherein the electronic computing system obtains the
search result from the database by a communication unit
of'the electronic computing system via a communication
link.

5. The computing environment security method according
to claim 1, wherein step (c) comprises:

analyzing hierarchies of views and elements in at least one

user interface indicated in the first data set to determine

US 9,053,322 B2

19

a first characteristic relationship accordingly, and gen-
erating first characteristic data for the first data set
according to the first characteristic relationship.

6. The computing environment security method according
to claim 5, wherein step (c) further comprises:

analyzing executable code associated with the elements

and alayout in the at least one user interface indicated in
the first data set to obtain relationships between the
elements and corresponding processing events, and
names and numbers of corresponding application pro-
gram interfaces, to determine a second characteristic
relationship accordingly, and generating second charac-
teristic data for the first data set according to the second
characteristic relationship.

7. The computing environment security method according
to claim 6, wherein step (d) comprises:

determining similarity metadata with respect to the user

interface aspect according to the first characteristic data,
the second characteristic data of the first data set, and the
search result, corresponding to characteristic data
obtained from the database and corresponding to the first
and second characteristic data within respective corre-
sponding distances;

determining the similarity of the application package to be

tested based on the similarity metadata with respect to
the user interface aspect, wherein the similarity of the
application package to be tested is a similarity between
the application package to be tested and an application
package indicated in the database which corresponds to
the search result; and

determining whether the application package to be tested is

the repackaged application package according to the
similarity of the application package to be tested.

8. The computing environment security method according
to claim 1, wherein the contents with respect to the aspects
further comprise contents with respect to a program operation
aspect, the at least one data set further comprises a second
data set, and the second data set is the contents with respect to
the program operation aspect of the application package to be
tested.

9. The computing environment security method according
to claim 8, wherein step (c) comprises:

analyzing relationship of parameters and parameter con-

tents utilized by application program interfaces in
executable code indicated in the second data set to deter-
mine a second characteristic relationship, and generat-
ing first characteristic data for the second data set
according to the second characteristic relationship.

10. The computing environment security method accord-
ing to claim 8, wherein step (c) comprises:

analyzing a data flow of executable code indicated in the

second data set to determine a third characteristic rela-
tionship based on a plurality of input data, operations
undergone by the plurality of input data, and corre-
sponding final operations of the plurality of input data in
the second data set, and generating first characteristic
data for the second data set according to the third char-
acteristic relationship;

wherein the operations undergone by the plurality of input

data and the corresponding final operations of the plu-
rality of input data are associated with application pro-
gram interfaces in code flow of the second data set.

11. The method according to claim 8, wherein step (d)
comprises:

determining similarity metadata with respect to the user

interface aspect according to characteristic data of the
first data set and a first search result corresponding to

10

15

20

25

30

35

40

45

50

55

60

65

20

characteristic data that is obtained from the database and
corresponds to the characteristic data of the first data set
within a first corresponding distance;
determining similarity metadata with respect to the pro-
gram operation aspect according to characteristic data of
the second data set, and a second search result corre-
sponding to characteristic data that is obtained from the
database and corresponds to the characteristic data of the
second data set within a second corresponding distance;

determining the similarity of the application package to be
tested based on the similarity metadata with respect to
the user interface aspect and the similarity metadata with
respect to the program operation aspect, wherein the
similarity of the application package to be tested is a
similarity between the application package to be tested
and an application package indicated in the database
which corresponds to the first and second search results;
and

determining whether the application package to be tested is

the repackaged application package according to the
similarity of the application package to be tested.

12. The computing environment security method accord-
ing to claim 8, wherein the contents with respect to the aspects
further comprise contents with respect to a resource usage
aspect, the at least one data set further comprises a third data
set, and the third data set is the contents with respect to the
resource usage aspect of the application package to be tested.

13. The computing environment security method accord-
ing to claim 12, wherein step (c¢) comprises:

analyzing relationships of resources indicated in the third

data set to determine a fourth characteristic relationship,
and generating characteristic data for the third data set
according to the fourth characteristic relationship.

14. The computing environment security method accord-
ing to claim 13, wherein the relationships of resources are
relationships of permissions setting requested by the applica-
tion package to be tested.

15. The computing environment security method accord-
ing to claim 13, wherein the relationships of resources are
relationships of non-code content in the application package
to be tested.

16. The computing environment security method accord-
ing to claim 12, wherein step (d) comprises:

determining similarity metadata with respect to the user

interface aspect according to characteristic data of the
first data set and a first search result corresponding to
characteristic data that is obtained from the database and
corresponds to the characteristic data of the first data set
within a first corresponding distance;

determining similarity metadata with respect to the pro-

gram operation aspect according to characteristic data of
the second data set and a second search result corre-
sponding to characteristic data that is obtained from the
database and corresponds to the characteristic data of the
second data set within a second corresponding distance;
determining similarity metadata with respect to the
resource usage aspect according to characteristic data of
the third data set and a third search result corresponding
to characteristic data that is obtained from the database
and corresponds to the characteristic data of the third
data set within a third corresponding distance;
determining the similarity of the application package to be
tested based on the similarity metadata with respect to
the user interface aspect, the similarity metadata with
respect to the program operation aspect, and the similar-
ity metadata with respect to the resource usage aspect;
wherein the similarity of the application package to be

US 9,053,322 B2

21

tested is a similarity between the application package to
be tested and an application package indicated in the
database and corresponding to the first, second, and third
search results; and

determining whether the application package to be tested is
the repackaged application package according to the
similarity of the application package to be tested.

17. A non-transitory computing system readable storage
medium, recording a plurality of instructions executable by a
computing system, for executing steps of the computing envi-
ronment security method of claim 1 when the computing
system executes the instructions.

18. An electronic computing system, comprising:

a communication unit; and

a control unit, for receiving an application package to be
tested through the communication unit, and the control
unit at least:

dissolves the application package to be tested to obtain at
least one data set; wherein the application package to be
tested comprises contents with respect to a plurality of
aspects, and each of the at least one data set is contents
with respect to one of a plurality of aspects of the appli-
cation package to be tested, wherein the contents with
respect to the aspects comprise contents with respect to
auser interface aspect, the at least one data set comprises
a first data set, and the first data set is the contents with
respect to the user interface aspect of the application
package;

for each of the at least one data set, analyzes a characteristic
relationship of the contents with respect to the aspect
corresponding to the data set to generate characteristic
data for the data set according to the characteristic rela-
tionship;

determines whether the application package to be tested is
arepackaged application package according to the char-
acteristic data of the at least one data set and a search
result obtained from a database to generate a determina-
tion result; wherein the search result corresponds to the
characteristic data within a corresponding distance, and
the electronic computing system processes the applica-
tion package to be tested according to the determination
result.

19. The electronic computing system according to claim

18, further comprising:

a database unit, comprising characteristic data associated
with the aspects corresponding to a plurality of applica-
tion packages;

wherein the electronic computing system is a server sys-
tem, which declines a release request when the applica-
tion package to be tested is determined as the repack-
aged application package and a malicious program to
prohibit the application package to be tested from being
released.

20. The electronic computing system according to claim
18, being an electronic device obtains the search result from
a database unit by the communication unit of the electronic
computing system via a communication link.

21. The electronic computing system according to claim
20, wherein when the application package to be tested is
determined as the repackaged application package and a
malicious program according to the determination result, the
electronic computing system declines installation of the
application package to be tested.

22. The electronic computing system according to claim
20, wherein when the control unit determines that the appli-
cation package to be tested is not the repackaged application
package and is a new application package, the electronic

10

15

20

25

30

35

40

45

50

55

60

65

22

computing system sends the characteristic data of the at least
one data set to the database unit via the communication link
and stores the characteristic data of the at least one data set in
the database unit.

23. The electronic computing system according to claim
18, wherein the contents with respect to the aspects further
comprise contents with respect to a program operation aspect,
the at least one data set further comprises a second data set,
and the second data set is the contents with respect to the
program operation aspect of the application package.

24. The electronic computing system according to claim
23, wherein the control unit:

determines similarity metadata with respect to the user

interface aspect according to characteristic data of the
first data set and a first search result corresponding to
characteristic data that is obtained from the database and
corresponds to the characteristic data of the first data set
within a first corresponding distance; and

determines similarity metadata with respect to the program

operation aspect according to characteristic data of the
second data set and a second search result corresponding
to characteristic data that is obtained from the database
and corresponds to the characteristic data of the second
data set within a second corresponding distance; and
determines the similarity of the application package to be
tested based on the similarity metadata with respect to
the user interface aspect and the similarity metadata with
respect to the program operation aspect, and determines
whether the application package to be tested is the
repackaged application package, wherein the similarity
of the application package to be tested is a similarity
between the application package to be tested and an
application package indicated in the database and cor-
responding to the first and the second search results.
25. The electronic computing system according to claim
23, wherein the contents with respect to the aspects further
comprise contents with respect to a resource usage aspect, the
at least one data set further comprise a third data set, and the
third data set is the contents with respect to the resource usage
aspect in the application package.
26. The electronic computing system according to claim
25, wherein the control unit:
determines similarity metadata with respect to the user
interface aspect according to characteristic data of the
first data set and a first search result corresponding to
characteristic data that is obtained from the database and
corresponds to the characteristic data of the first data set
within a first corresponding distance; and
determines similarity metadata with respect to the program
operation aspect according to characteristic data of the
second data set and a second search result corresponding
to characteristic data that is obtained from the database
and corresponds to the characteristic data of the second
data set within a second corresponding distance;

determines similarity metadata with respect to the resource
usage aspect according to characteristic data of the third
data set and a third search result corresponding to char-
acteristic data that is obtained from the database and
corresponds to the characteristic data of the third data set
within a third corresponding distance; and

determines the similarity of the application package to be

tested based on the similarity metadata with respect to
the user interface aspect, the similarity metadata with
respect to the program operation aspect, and the similar-
ity metadata with respect to the resource usage aspect,
and determines whether the application package to be
tested is the repackaged application package; wherein

US 9,053,322 B2
23

the similarity of the application package to be tested is a
similarity between the application package to be tested
and an application package indicated in the database and
corresponding to the first and the second and the third
search results. 5

24

